Innovative Methodologies

for Road Surface Maintenance in Japan; HIR (Hot In-place Recycling), Hot In-place Thin Overlay and Hot In-place Transforming National Conference on Highways Construction Technology at Hyderabad July 15, 2016

HIR Target Work Fields (Red-Framed)

	Type of Activity	Increase	Increase	Reduce	Restore
	Type of Activity	Capacity	Strength	Aging	Serviceability
	New Construction	0	0	0	0
	Reconstruction	0	0	0	0
	Major (Heavy) Rehabilitation		0	0	0
	Structural Overlay		0	0	0
	Minor (Light) Rehabilitation			0	0
Pavement Preservation	Preventive Maintenance			0	0
	Routine Maintenance				0
	Corrective (Reactive) Maintenance				0
	Catastrophic Maintenance				0

Pavement Preservation Guidelines

Table Source : US FHWA

Hot In-place Recycling

- •Economics Including Construction Cost & Long Life
- Resource Saving
- Safety Improvement
- CO₂ Emission Reduction

Innovative Method beyond the Conventional Method

Pavement Management System for Sustainable Road Construction

Pavement Life-Cycle Prolongation through Keeping Condition Approach

Accumulated Axile Loads

Pavement Life

Features of asphalt mixture; Recyclable,

Easily softend by heater at 60 to 80 $^\circ\!\mathrm{C}$ with aggregates not damaged.

What is HIR?

Resource Saving

Reuse 100% of existing asphalt mixture (Usually 70% reduction of new asphalt mixture compared with conventional method)

Work Speed

5m/min on average

Environment

No smell, no smoke, no fire under usual operation

Reduction of CO2 emission (40% reduction compared with conventional Mill & Fill method)

Economics

More economical than prevailing conventional Mill & Fill method

Re-habilitation Method		nabilitation Method	HIR	Mill & Fill	CIR	Mico Surfacing
	Rutting		0	0	0	
Type of Pavement Distress	Kuung		0	0	0	
	Unevenness (Corrugation)		0	0	-	×
	Cracking	Alligator	O *	0*	0	×
		Longitudinal	0	0	0	×
		Transverse	0	0	0	×
	Raveling		0	0	-	0
	Bleeding		0	0	-	Δ
	Slipperiness		0	0	-	0
Characteristics	Existing Asphalt Mixture		Loosening	Hard Milling or Excavation	Hard Milling	-
	Aggregate in Use		Not Crushed	Crushed and Disposed	Crushed	-
			100% Onsite Reuse	Replace	100% Onsite Reuse	-
	Mixture Gradation		Unchanged	-	Changed	-
	Pre-Treatment Under Layer		Not Required	Tack Coat	Cleaning and Tack Coat	Cleaning and Tack Coat
	Transport Reclaimed Materials to Plant		Not Required	By Truck	Not Required	Not Required

*: \triangle depending on the damaged condition

 \bigcirc Suitable \times Unsuitable - Usually not used

Superb Hot Air Heating System developed by Green ARM

HEATER (Green ARM's Heater) (Patent No. JP 4024293)

Hot Air Heating System;

Easy Supply of Fuel on Site for Surface Heating,

Diesel: Much Safer Fuel than Propane,

Hot Air Heating; Gentle and Even Heating,

Step-less Adjustment of Heating Width

Surface Temperature after Heating

Heating

Advantages with Hot Air Circulation Heater

- 1. Gentle Heating; No Overheating of Road Surface.
- 2. Homogeneous Heating of Road Surface.
- 3. No Smoke, No Fire, No Odor.

The performance has been confirmed through road heating work in Japan and California, US.

Hot In-place Thin Overlay

Hot In-place Thin Overlay; New Easy Preservation Method

Light Distress

Structural Profile

Method of Hot In-place Thin Overlay (HITO)

- Simple Repavement
- Short Train Composites
- Good Performance

Key Technology of HITO

Simple Work;

- 1. Combination of Efficient Heater & Conventional Paving Machine
- 2. Advance Mix Design Work Not Required ;

Ordinary Asphalt Mixture Available in the Market ready to be used for New Hot Asphalt Mixture to be added

HITO Work; Evaluation of Increase in Strength

Loading Test with Wheel Tracking

HITO Work; Cost Reduction

HITO Work; CO₂ Reduction

17

1. Life Extension

- Sound conditions confirmed in more than 3 years
- 2. Cost Reduction
 - 49% Less than Mill & Fill
- 3. <u>CO₂ Reduction</u>
 - 39% Less than Mill & Fill
- 4. Riding Quality Improvement
 - Elimination of Rutting
 - Elimination of Cracks

Hot In-place Transforming; Invented by Green ARM and Patented

Hot In-place Transforming (Dense to Porous)

Dense Surface Mixture sieved, then transformed to Porous Mixture and Mastic Mixture on Site by Double-lay Paver

Hot In-place Transforming Work done (Dense to Porous)

Site;	National Highway Route 126 in Chiba prefecture, Japan
Construction Volume;	3,000m (Length: 400m × 2Lane)
Construction Speed;	2.0m/min

Green ARM offers Green and Cost Saving Technologies for Road Surface Maintenance and together with Terpl Private Co., Ltd., India is ready to contribute to Road Infrastructure Improvement in India

Thank you.

To be followed by NICHIREKI, which introduces its bridge life prolongation technology.